16.8 Приближение с помощью кривых
При помощи этого пункта меню можно строить графики реального течения наблюдаемых процессов и приближать их при помощи аппроксимационных кривых. Для этого в ваше распоряжение предоставляется, в общей сложности, одиннадцать различных типов кривых. В большинстве случаев речь здесь будет идти о временных рядах.
В качестве примера рассмотрим изменение зарплаты в Федеративной республике Германии с 1950 года по 1988, описываемое так называемым индексом действительной зарплаты. Его можно получить при помощи соотнесения текущего годового уровня зарплаты к уровню к 1980 году, для которого значение индекса принимается равным 100.
Год |
Индекс действительной зарплаты |
1950 |
28,6 |
1960 |
46,9 |
1965 |
63,0 |
1970 |
80,4 |
1975 |
87,9 |
1980 |
100,0 |
1981 |
98,2 |
1982 |
96,5 |
1983 |
96,0 |
1984 |
96,9 |
1985 |
98,0 |
1986 |
101,2 |
1987 |
104,5 |
1988 |
107,6 |
Эти данные находятся в файле lohasav. В файле также находится и ещё одна, третья, переменная, которая отражает разность между текущим значением года и 1949 годом. Эта переменная принимает значения от 1 до 39 и указывает на количество лет, прошедших с 1949 года.
Откройте файл lohn.sav.
Выберите в меню Analyze (Анализ) Regression (Регрессия) Curve Estimation...(Подгонка кривых)
Рис. 16.24: Диалоговое окно Curve Estimation (Подгонка кривых)
Откроется диалоговое окно Curve Estimation (Подгонка кривых), в котором можно выбрать одну из одиннадцати различных моделей.
Предлагаемым моделям соответствуют следующие формулы:
Молель | Формула |
Линейная |
у= b0+ b1хX |
Логарифмическая |
у= b0+ b1х ln(х) |
Обратная |
|
Квадратичная |
у= b0+ b1хX + b2хX2 |
Кубическая |
у= b0+ b1хХ + b2хX2 + b3хX3 |
Степенная |
y= b0хXb1 |
Показательная (комбинированная) |
y= b0 * b1 |
S |
у= е^(b0+b1xX) |
Логистическая |
|
Рост |
у= е^(b0+b1xX) |
Экспоненциальная |
y=b0 х е^(b1xt) |
Для логистической модели необходимо предварительно задать параметр и, который задается непосредственно в диалоговом окне Curve Estimation (Подгонка кривых) в качестве верхнего предела. Задачей программы является определение коэффициентов b0, b1, b2 и b3.
В поле для меток наблюдений (Case labels) можете указать некоторую переменную для описания данного наблюдения, которая затем будет появляться в режиме выбора точек (см. гл. 22.8.1) на построенном графике (см. рис. 16.25).
Перенесите переменную lohn в поле для зависимых переменных, а переменную anz в поле для независимых переменных.
Произведём оценку при помощи квадратичной функции; деактивируйте линейную модель и отметьте вместо неё квадратичную модель.
Активирование опции Time (Время) имеет смысл только тогда, когда анализируемые переменные представлены в виде временных рядов с одинаковыми интервалами.
Затем щёлкните на кнопке Save (Сохранение) и в появившемся диалоговом окне выберите опцию, с помощью которой прогнозируемые значения переменной будут сохранены в исходном файле данных.
Вернувшись в первое диалоговое окно, начните расчёт нажатием ОК.
Вывод результатов производится в старой табличной форме. Самыми важными показателями являются:
Independent: ANZ
Dependent Mth Rsq d.f. F Sigf b0 b1 b2
LOHN QUA ,979 11 251,10 ,000 22,5918 3,0615 -,0242
Эта таблица содержит значения коэффициентов а, b1, и b2. К данным исходного файла была добавлена переменная fit_1, которая содержит прогнозируемые значения, найденные на основе рассчитанных коэффициентов. Далее в окне просмотра появляется график, на котором отображаются кривые, соответствующие изменению наблюдаемых и спрогнозированных значений.
Приближение с помощью выбранной кривой, как кажется, удалось довольно не плохо. В противном случае можно было бы применить и другие модели, для использования которых, конечно же, не помешал бы некоторый опыт в области подобных криволинейных приближений.
Рис 16.25: Наблюдаемая и оценочная кривая