5.1.2 Нормальное распределение

Многочисленные методы, с помощью которых обрабатываются переменные, относящиеся к интервальной шкале, исходят из гипотезы, что их значения подчиняются нормальному распределению. При таком распределении большая часть значений группируется около некоторого среднего значения, по обе стороны от которого частота наблюдений равномерно снижается.

В качестве примера рассмотрим нормальное распределение возраста, которое строится по данным исследований гипертонии (файл hyper.sav) с помощью команд меню Graphs (Графы) Histogramm... (Гистограмма) (см. рис. 5.1).

На диаграмме нанесена кривая нормального распределения (Колокол Гаусса). Реальное распределение в большей или меньшей степени отклоняется от этой идеальной кривой. Выборки, строго подчиняющиеся нормальному распределению, на практике, как правило, не встречаются. Поэтому почти всегда необходимо выяснить, можно ли реальное распределение считать нормальным и насколько значительно заданное распределение отличается от нормального.

Перед применением любого метода, который предполагает существование нормального распределения, наличие последнего нужно проверять в первую очередь. Классическим примером статистического теста, который исходит из гипотезы о нормальном распределении, можно назвать t-тест Стьюдента, с помощью которого сравнивают две независимые выборки. Если же данные не подчиняются нормальному распределению, следует использовать соответствующий непараметрический тест, в случае двух независимых выборок — U-тест Манна и Уитни.

Если визуальное сравнение реальной гистограммы с кривой нормального распределения кажется недостаточным, можно применить тест Колмогорова-Смирнова, который находится в меню Analyze (анализ данных) в наборе непараметрических тестов (см. раздел 14.5).

Рис. 5.1: Распределение возраста

В нашем примере с распределением возрастов тест Колмогорова-Смирнова не показывает значительного отклонения от нормального распределения.

Еще одну возможность проверки наличия нормального распределения дает построение графика нормального распределения (см. разделы 10.4.1, 22.12), в котором наблюдаемые значения сопоставляются с ожидаемыми при нормальном распределении.


Новости

Информация

Ispss
Улица Новомосковская 36
500003 Екатеринбург

E-mail: inform@